The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies
详细信息    查看全文
文摘
Glycoside hydrolases (GHs) cleave glycosidic linkages in carbohydrates, typically via inverting or retaining mechanisms, the latter of which proceeds via a two-step mechanism that includes formation of a glycosyl-enzyme intermediate. We present two new structures of the catalytic domain of Hypocrea jecorina GH Family 7 cellobiohydrolase Cel7A, namely a Michaelis complex with a full cellononaose ligand and a glycosyl-enzyme intermediate, that reveal details of the 鈥榮tatic鈥?reaction coordinate. We also employ transition path sampling to determine the 鈥榙ynamic鈥?reaction coordinate for the catalytic cycle. The glycosylation reaction coordinate contains components of forming and breaking bonds and a conformational change in the nucleophile. Deglycosylation proceeds via a product-assisted mechanism wherein the glycosylation product, cellobiose, positions a water molecule for nucleophilic attack on the anomeric carbon of the glycosyl-enzyme intermediate. In concert with previous structures, the present results reveal the complete hydrolytic reaction coordinate for this naturally and industrially important enzyme family.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700