Nanoparticle Brush Architecture Controls Polymer Diffusion in Nanocomposites
详细信息    查看全文
文摘
We show that polymer diffusion in polymer nanocomposites (PNCs) is controlled by the architecture of polymer brushes grafted to hard spherical nanoparticles (NPs). At high grafting density, diffusing chains are excluded from the polymer brush leading to greater confinement. However, at lower grafting density, these chains penetrate the brush and diffusion is similar to the hard NP case, compared at the same NP loading. We calculate the effective interparticle spacing (IDeff) by modeling polymer penetration into the grafted brush using self-consistent field theory. When plotted against a confinement parameter (IDeff/2Rg, where Rg is the radius of gyration of the diffusing polymer), reduced diffusion coefficients (D/Do) fall on a master curve independent of brush architecture. These findings show that brush architecture provides a new route toward controlling polymer dynamics and viscoelasticity of PNCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700