A New Nitrogenase Mechanism Using a CFe8S9 Model: Does H2 Elimination Activate the Complex to N2 Addition to the Central Carbon Atom?
详细信息    查看全文
  • 作者:Michael L. McKee
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2016
  • 出版时间:February 11, 2016
  • 年:2016
  • 卷:120
  • 期:5
  • 页码:754-764
  • 全文大小:894K
  • ISSN:1520-5215
文摘
A truncated model of the FeMo cofactor is used to explore a new mechanism for the conversion of N2 to NH3 by the nitrogenase enzyme. After four initial protonation/reduction steps, the H4CFe8S9 cluster has two hydrogen atoms attached to sulfur, one hydrogen bridging two iron centers and one hydrogen bonded to carbon. The loss of the CH and FeHFe hydrogens as molecular hydrogen activates the cluster to addition of N2 to the carbon center. This unique step takes place at a nearly planar four-coordinate carbon center and leads to an intermediate with a significantly weakened N–N bond. A hydrogen attached to a sulfur atom is then transferred to the distal nitrogen atom. Additional prontonation/reduction steps are modeled by adding a hydrogen atom to sulfur and locating the transition states for transfer to nitrogen. The first NH3 is lost in a thermal neutral step, while the second step is endothermic. The loss of H2 activates the complex by reducing the barrier for N2 addition by 3.5 kcal/mol. Since this is the most difficult step in the mechanism, reducing the barrier for this step justifies the “extra expense” of H2 production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700