Understanding the Electrolyte Background for Biochemical Sensing with Ion-Sensitive Field-Effect Transistors
详细信息    查看全文
文摘
Silicon nanowire field-effect transistors have attracted substantial interest for various biochemical sensing applications, yet there remains uncertainty concerning their response to changes in the supporting electrolyte concentration. In this study, we use silicon nanowires coated with highly pH-sensitive hafnium oxide (HfO2) and aluminum oxide (Al2O3) to determine their response to variations in KCl concentration at several constant pH values. We observe a nonlinear sensor response as a function of ionic strength, which is independent of the pH value. Our results suggest that the signal is caused by the adsorption of anions (Cl鈥?/sup>) rather than cations (K+) on both oxide surfaces. By comparing the data to three well-established models, we have found that none of those can explain the present data set. Finally, we propose a new model which gives excellent quantitative agreement with the data.

Keywords:

nanowire; sensing; anion adsorption; high-k oxide; ion-sensitive field-effect transistor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700