Confocal Laser Scanning Microscopy-Compatible Microfluidic Membrane Flow Cell as a Nondestructive Tool for Studying Biofouling Dynamics on Forward Osmosis Membranes
详细信息    查看全文
文摘
In membrane biofouling studies, quantification of biofouling is often conducted destructively and the results reflect only a snapshot of the biofouling processes. This limitation is mainly due to the lack of tools that allow us to monitor dynamics of biofouling without the need to disassemble the membrane testing systems. In this study, we developed a novel multichannel fluidic membrane biofilm flow cell that allows nondestructive, real-time monitoring of biofouling dynamics on forward osmosis (FO) membranes using confocal laser scanning microscopy. As a proof of concept, we used green fluorescent protein-tagged Shewanella oneidensis as a model organism and examined its biofilm development on membranes in FO mode. The temporal profiles of quantitative biofouling parameters such as surface coverage, biovolume, and biofilm thickness were obtained without disrupting the continuous operation of the membrane testing system. We also demonstrated the applicability of the microfluidic membrane flow cells, revealing biofouling dynamics of natural, untagged bacteria on FO membranes. The microfluidic membrane flow cell developed in this study can be readily applied to evaluate antibiofouling activities of FO membranes and allows direct comparison of biofouling dynamics between FO membranes with different surface modifications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700