Cellulosic Ethanol from Municipal Solid Waste: A Case Study of the Economic, Energy, and Greenhouse Gas Impacts in California
详细信息    查看全文
  • 作者:Mikhail Chester ; Elliot Martin
  • 刊名:Environmental Science & Technology
  • 出版年:2009
  • 出版时间:July 15, 2009
  • 年:2009
  • 卷:43
  • 期:14
  • 页码:5183-5189
  • 全文大小:101K
  • 年卷期:v.43,no.14(July 15, 2009)
  • ISSN:1520-5851
文摘
As cellulosic ethanol technologies advance, states could use the organic content of municipal solid waste as a transportation fuel feedstock and simultaneously reduce externalities associated with waste disposal. We examine the major processes required to support a lignocellulosic (employing enzymatic hydrolysis) municipal solid waste-to-ethanol infrastructure computing cost, energy, and greenhouse gas effects for California. The infrastructure is compared against the Business As Usual case where the state continues to import most of its ethanol needs from the Midwest. Assuming between 60% and 90% practical yields for ethanol production, California could produce between 1.0 and 1.5 billion gallons per year of ethanol from 55% of the 40 million metric tonnes of waste currently sent to landfills annually. The classification of organic wastes and ethanol plant operation represent almost the entire system cost (between $3.5 and $4.5 billion annually) while distribution has negligible cost effects and savings from avoided landfilling is small. Fossil energy consumption from Business As Usual decreases between 82 and 130 PJ largely due to foregone gasoline consumption. The net greenhouse gas impacts are ultimately dependent on how well landfills control their emissions of decomposing organics. Based on the current landfill mix in the state, the cellulosic infrastructure would experience a slight gain in greenhouse gas emissions. However, net emissions can rise if organics diversion releases carbon that would otherwise be flared and sequestered. Emissions would be avoided if landfills are not capable of effectively controlling emissions during periods of active waste decay. There is currently considerable uncertainty surrounding the recovery efficiency of landfill emissions controls. In either case, burying lignin appears to be better than burning lignin because of its decay properties, energy and carbon content. We estimate the breakeven price for lignocellulosic ethanol between $2.90 and $3.47/gal (μ = $3.13/gal).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700