Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties
详细信息    查看全文
文摘
Development of smart, multifunction materials is challenging but important for many fundamental and industrial applications. Here, we synthesized and characterized zwitterionic poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (polyVBIPS) brushes as ion-responsive smart surfaces via the surface-initiated atom transfer radical polymerization. PolyVBIPS brushes were carefully characterized for their surface morphologies, compositions, wettability, and film thicknesses by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle, and ellipsometer, respectively. Salt-responsive, switching properties of polyVBIPS brushes on surface hydration, friction, and antifouling properties were further examined and compared both in water and in salt solutions with different salt concentrations and counterion types. Collective data showed that polyVBIPS brushes exhibited reversible surface wettability switching between in water and saturated NaCl solution. PolyVBIPS brushes in water induced the larger protein absorption, higher surface friction, and lower surface hydration than those in salt solutions, exhibiting 鈥渁nti-polyelectrolyte effect鈥?salt responsive behaviors. At appropriate ionic conditions, polyVBIPs brushes were able to switch to superlow fouling surfaces (<0.3 ng/cm2 protein adsorption) and superlow friction surfaces (u 鈭?10鈥?). The relationship between brush structure and its salt-responsive performance was also discussed. This work provides new zwitterionic surface-responsive materials with controllable antifouling and friction capabilities for multifunctional applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700