Controllable and Rapid Synthesis of Long ZnO Nanowire Arrays for Dye-Sensitized Solar Cells
详细信息    查看全文
文摘
The hydrothermal method is widely used to synthesize ZnO nanowires for electrical and optical devices. However, the rapid synthesis of long vertically aligned ZnO nanowire arrays on a transparent conductive oxide substrate is still a challenge and also time-consuming. In this paper, we report a controllable and rapid growth of long ZnO nanowire arrays by a microwave heating method with fresh precursor solution continuously injected into the reactor. This method can avoid the growth stoppage and keep the concentration of the reactants in dynamic equilibrium during the whole reaction. It is found that the length of the nanowires increases linearly with growth time, and the growth rate is as high as 58鈥?8 nm/min, producing ZnO nanowires with a length over 10 渭m after growing for 2鈥? h. When these nanowire arrays were used as the photoanodes of dye-sensitized solar cells (DSSC), the power conversion efficiency of these ZnO nanowire-based DSSCs increases with the length of the nanowires, which is mainly attributed to the enlarged internal surface area and therefore dye-loading amount enhancement in the longer ZnO nanowires. This controllable and rapid method is useful for synthesizing ZnO or other ultralong 1D nanostructure for nanodevices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700