Full Determination of Individual Reconstructed Atomic Columns in Intermixed Heterojunctions
详细信息    查看全文
文摘
Heterojunctions offer a tremendous opportunity for fundamental as well as applied research, ranging from the unique electronic phases in between oxides to the contact issues in semiconductor devices. Despite their pivotal roles, determining individual building atom of matter in heterojunctions is still challenging, especially for those between highly dissimilar structures, in which breaking of symmetry, chemistry, and bonds may give rise to complex reconstruction and intermixing at the junction. Here, we combine electron microscopy, spectroscopy, and first-principles calculations to determine individual reconstructed atomic columns and their charge states in a complex, multicomponent heterojunction between the delafossite CuScO2 and spinel MgAl2O4. The high resolution enables us to demonstrate that the reconstructed region can accommodate a highly selective intermixing of Cu cations at specific Sc cation sites with half atomic density, forming a complex ordered superstructure. Such ability to resolve reconstructed heterojunctions to the atomic dimensions helps elucidate atomistic mechanisms and discover novel properties with applications in a diverse range of scientific disciplines.

Keywords:

CuScO2/MgAl2O4 interface; atomic reconstruction; ordered superstructure; transmission electron microscopy; density functional theory

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700