Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite
详细信息    查看全文
文摘
The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag鈥揨nO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag鈥揨nO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag鈥揨nO nanocomposite possessed excellent visible light photocatalytic activity for the degradation of methyl orange, methylene blue, and 4-nitrophenol. Electrochemical impedance spectroscopy and linear scan voltammetry under dark and visible light irradiation confirmed the enhanced visible light activity of the Ag鈥揨nO as photocatalyst and photoelectrode. These results suggest that Ag nanoparticles induced visible light photocatalytic degradation and enhanced the visible light activity of the photoelectrodes by minimizing the recombination of photogenerated electrons and holes, thereby extending the response of pure ZnO to visible light.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700