Modeling and Process Design of Intraparticle Adsorption in Single-Stage and Multistage Continuous Stirred Reactors: An Analytical Kinetics Approach
详细信息    查看全文
文摘
Continuous adsorption in stirred reactors in the form of carbon in pulp (CIP) and resin in pulp (RIP) is an established process for the extraction of gold and uranium. Under the circumstance of intraparticle diffusion resistance, CIP and RIP have been accurately modeled by the Boyd鈥檚 series (reversible adsorption) and shrinking core model (irreversible adsorption). The present study, in its first part, introduces an analytical formula that most closely approximates both models. Using such formula, the study addresses a basic algorithm for optimization of single-stage continuous adsorption systems through linking of the major process variables. Furthermore, this study is devoted to developing an 鈥渁nalytical kinetics approach鈥?for the design of multistage CIP and RIP processes via application of Glauekauf鈥檚 multiple series. Advantages of the new approach over the McCabe鈥揟hiele 鈥淓quilibrium Approach鈥?are (1) the incorporation of the kinetics and equilibrium into one unified model, and (2) accurate determination of the number of stages, reactor size, and optimum operational conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700