Anodic Growth of Large-Diameter Multipodal TiO2 Nanotubes
详细信息    查看全文
文摘
We report on the formation of a new class of nanostructures, namely, multipodal hollow titania nanotubes possessing two or more legs, achieved during the electrochemical anodization of titanium in diethylene glycol (DEG)-based electrolytes. The unique multipodal porous structure is expected to extend and enhance the applications of TiO2 nanotube arrays. Multipodal nanotubes form by a process we term “nanotube combination”, which only occurs in viscous electrolytes at high anodization potentials in the presence of a low concentration of fluoride-bearing species. The mechanism of formation of multipodal nanotubes is considered, and the tube length at which nanotube combination occurs is predicted theoretically using a simplified analytical model. The results suggest that capillary forces strong enough to bend the TiO2 nanotubes by tens of degrees are generated during the imbibition of electrolyte into and out of the intertubular spaces between adjacent tapered nanotubes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700