Modeling of Heat Transfer in a Porous Monolith Catalyst with Square Channels
详细信息    查看全文
文摘
Interaction of gas flow heterogeneity and heat flow distribution in porous honeycomb catalyst with square channels is under study by 3D Navier–Stokes equations for methane oxidation as model reaction. Gas stream passes through the monolith frontal surface into porous structure which generates complex rearrangement of the gas flow entering the monolith channel, and therefore sharp gradients of the heat flow form between the channel wall and gas stream. The catalyst temperature differs significantly from that of the gaseous medium, increases abruptly, and causes fast reduction of methane concentration in the near-wall region. The gas temperature grows noticeably at certain distance from the inlet, and its distribution along the channel is rather smooth. Axial profiles of Nusselt number determined by local heat transfer characteristics are close in different cases: for constant wall temperature and nonuniform distribution of the thermal characteristics as well as in the cases without and with catalytic reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700