Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4
详细信息    查看全文
文摘
A high-yield and upscalable colloidal synthesis route for the production of quaternary I2鈥揑I鈥揑V鈥揤I4 nanocrystals, particularly stannite Cu2+xCd1鈥?i>xSnSe4, with narrow size distribution and precisely controlled composition is presented. It is also shown here how the diversity of valences in the constituent elements allows an effective control of their electrical conductivity through the adjustment of the cation ratios. At the same time, while the crystallographic complexity of quaternary chalcogenides is associated with intrinsically low thermal conductivities, the reduction of the lattice dimensions to the nanoscale further reduces the materials thermal conductivity. In the specific case of the stannite crystal structure, a convenient slab distribution of the valence band maximum states permits a partial decoupling of the p-type electrical conductivity from both the Seebeck coefficient and the thermal conductivity. Combining these features, we demonstrate how an initial optimization of the nanocrystals Cd/Cu ratio allowed us to obtain low-temperature solution-processed materials with ZT values up to 0.71 at 685 K.

Keywords:

nanocrystal; chalcogenide; thermoelectric; colloidal synthesis; stannite; semiconductor nanoparticle

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700