Nuclear Magnetic Resonance Structural Characterization of Substrates Bound to the α-2,6-Sialyltransferase, ST6Gal-I
详细信息    查看全文
文摘
The α-2,6-sialyltransferase (ST6Gal-I) is a key enzyme that regulates the distribution of sialic acid-containing molecules on mammalian cell surfaces. However, the fact that its native form is membrane-bound and glycosylated has made structural characterization by X-ray crystallography of this eukaryotic protein difficult. Its large size (40 kDa for just the catalytic domain) also poses a challenge for complete structure determination by nuclear magnetic resonance (NMR). However, even without complete structure determination, there are NMR strategies that can return targeted information about select regions of the protein, including information about the active site as seen from the perspective of its bound ligands. Here, in a continuation of a previous study, a spin-labeled mimic of a glycan acceptor ligand is used to identify additional amino acids located in the protein active site. In addition, the spin-labeled donor is used to characterize the relative placement of the two bound ligands. The ligand conformation and protein−ligand contact surfaces are studied by transferred nuclear Overhauser effects (trNOEs) and saturation transfer difference (STD) experiments. The data afforded by the methods mentioned above lead to a geometric model of the bound substrates that in many ways carries an imprint of the ST6Gal-I binding site.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700