Transparent, Conducting Nb:SnO2 for Host鈥揋uest Photoelectrochemistry
详细信息    查看全文
文摘
Many candidate materials for photoelectrochemical water splitting will be better employed by decoupling optical absorption from carrier transport. A promising strategy is to use multiple thin absorber layers supported on transparent, conducting materials; however there are limited such materials that are both pH stable and depositable on arbitrary high surface area substrates. Here we present the first 3D porous niobium doped tin oxide (NTO) electrodes fabricated by atomic layer deposition. After high temperature crystallization the NTO is transparent, conductive, and stable over a wide range of pH. The optimized films have high electrical conductivity up to 37 S/cm concomitant with a low optical attenuation coefficient of 0.99 渭m鈥? at 550 nm. NTO was deposited onto high surface area templates that were subsequently coated with hematite Fe2O3 for the photoelectrochemical water splitting. This approach enabled near-record water splitting photocurrents for hematite electrodes employing a host鈥揼uest strategy.

Keywords:

Transparent conducting oxide; nanostructure; atomic layer deposition; Nb-doped SnO2; hematite photoanode; water splitting

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700