Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes
详细信息    查看全文
  • 作者:Andrei L. Lomize ; Irina D. Pogozheva ; Henry I Mosberg
  • 刊名:Journal of Chemical Information and Modeling
  • 出版年:2011
  • 出版时间:April 25, 2011
  • 年:2011
  • 卷:51
  • 期:4
  • 页码:930-946
  • 全文大小:1188K
  • 年卷期:v.51,no.4(April 25, 2011)
  • ISSN:1549-960X
文摘
A new computational approach to calculating binding energies and spatial positions of small molecules, peptides, and proteins in the lipid bilayer has been developed. The method combines an anisotropic solvent representation of the lipid bilayer and universal solvation model, which predicts transfer energies of molecules from water to an arbitrary medium with defined polarity properties. The universal solvation model accounts for hydrophobic, van der Waals, hydrogen-bonding, and electrostatic solute鈭抯olvent interactions. The lipid bilayer is represented as a fluid anisotropic environment described by profiles of dielectric constant (蔚), solvatochromic dipolarity parameter (蟺*), and hydrogen bonding acidity and basicity parameters (伪 and 尾). The polarity profiles were calculated using published distributions of quasi-molecular segments of lipids determined by neutron and X-ray scattering for DOPC bilayer and spin-labeling data that define concentration of water in the lipid acyl chain region. The model also accounts for the preferential solvation of charges and polar groups by water and includes the effect of the hydrophobic mismatch for transmembrane proteins. The method was tested on calculations of binding energies and preferential positions in membranes for small-molecules, peptides and peripheral membrane proteins that have been experimentally studied. The new theoretical approach was implemented in a new version (2.0) of our PPM program and applied for the large-scale calculations of spatial positions in membranes of more than 1000 peripheral and integral proteins. The results of calculations are deposited in the updated OPM database (ich.edu" class="extLink">http://opm.phar.umich.edu).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700