The Ice鈭扸apor Interface and the Melting Point of Ice Ih for the Polarizable POL3 Water Model
详细信息    查看全文
文摘
We use molecular dynamics simulations to determine the melting point of ice Ih for the polarizable POL3 water force field (Dang, L. X. J. Chem. Phys.1992, 97, 2659). Simulations are performed on a slab of ice Ih with two free surfaces at several different temperatures. The analysis of the time evolution of the total energy in the course of the simulations at the set of temperatures yields the melting point of the POL3 model to be Tm = 180 卤 10 K. Moreover, the results of the simulations show that the degree of hydrogen-bond disorder occurring in the bulk of POL3 ice is larger (at the corresponding degree of undercooling) than in ice modeled by nonpolarizable water models. These results demonstrate that the POL3 water force field is rather a poor model for studying ice and ice鈭抣iquid or ice鈭抳apor interfaces. While a number of polarizable water models have been developed over the past years, little is known about their performance in simulations of supercooled water and ice. This study thus highlights the need for testing of the existing polarizable water models over a broad range of temperatures, pressures, and phases, and developing a new polarizable water force field, reliable over larger areas of the phase diagram.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700