State-Specific Collision Dynamics of Molecular Super Rotors with Oriented Angular Momentum
详细信息    查看全文
文摘
An optical centrifuge pulse drives carbon dioxide molecules into ultrahigh rotational states with rotational frequencies of 蠅 鈮?32 THz based on the centrifuge frequency at the full width at half-maximum of the spectral chirp. High-resolution transient IR absorption spectroscopy is used to measure the time-evolution of translational and rotational energy for a number of states in the range of J = 0鈥?00 at a sample pressure of 5鈥?0 Torr. Transient Doppler profiles show that the products of super rotor collisions contain substantial amounts of translational energy, with J-dependent energies correlating to a range of 螖J propensities. The transient population in J = 100 is short-lived, indicating rapid relaxation of high J states; populations in J = 36, 54, and 76 increase overall as the super rotor energy is redistributed. Transient line profiles for J = 0 and 36 are consistently narrower than the initial ambient sample temperature, showing that collision cross sections for super rotors increase with decreasing collision energy. Quantum scattering calculations on Ar鈥揅O2(j) collisions are used to interpret the qualitative features of the experimental results. The results of this study provide the groundwork for developing a more complete understanding of super rotor dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700