Chemical Analysis of Drug Biocrystals: A Role for Counterion Transport Pathways in Intracellular Drug Disposition
详细信息    查看全文
文摘
In mammals, highly lipophilic small molecule chemical agents can accumulate as inclusions within resident tissue macrophages. In this context, we characterized the biodistribution, chemical composition, and structure of crystal-like drug inclusions (CLDIs) formed by clofazimine (CFZ), a weakly basic lipophilic drug. With prolonged oral dosing, CFZ exhibited a significant partitioning with respect to serum and fat due to massive bioaccumulation and crystallization in the liver and spleen. The NMR, Raman, and powder X-ray diffraction (p-XRD) spectra of CLDIs isolated from the spleens of CFZ-treated mice matched the spectra of pure, CFZ hydrochloride crystals (CFZ-HCl). Elemental analysis revealed a 237-fold increase in chlorine content in CLDIs compared to untreated tissue samples and a 5-fold increase in chlorine content compared to CFZ-HCl, suggesting that the formation of CLDIs occurs through a chloride mediated crystallization mechanism. Single crystal analysis revealed that CFZ-HCl crystals had a densely packed orthorhombic lattice configuration. In vitro, CFZ-HCl formed at a pH of 4鈥? only if chloride ions were present at sufficiently high concentrations (>50:1 Cl鈥?/sup>/CFZ), indicating that intracellular chloride transport mechanisms play a key role in the formation of CLDIs. While microscopy and pharmacokinetic analyses clearly revealed crystallization and intracellular accumulation of the drug in vivo, the chemical and structural characterization of CLDIs implicates a concentrative, chloride transport mechanism, paralleling and thermodynamically stabilizing the massive bioaccumulation of a weakly basic drug.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700