Hierarchical Layered Heterogeneous Graphene-poly(N-isopropylacrylamide)-clay Hydrogels with Superior Modulus, Strength, and Toughness
详细信息    查看全文
文摘
Biological composites are renowned for their elaborate heterogeneous architectures at multiple scales, which lead to a unique combination of modulus, strength, and toughness. Inspired by biological composites, mimicking the heterogeneous structural design principles of biological composites is a powerful strategy to construct high-performance structural composites. Here, we creatively transfer some heterogeneous principles of biological composites to the structural design of nanocomposite hydrogels. Unique heterogeneous conductive graphene-PNIPAM-clay hydrogels are prepared through a combination of inhomogeneous water removal processes, in situ free-radical polymerization, and chemical reduction of graphene oxide. The nanocomposite hydrogels exhibit hierarchical layered heterogeneous architectures with alternate stacking of dense laminated layers and loose porous layers. Under tensile load, the stiff dense laminated layers serve as sacrificial layers that fracture at a relatively low strain, while the stretchable loose porous layers serve as energy dissipation layers by large extension afterward. Such local inhomogeneous deformation of the two heterogeneous layers enables the nanocomposite hydrogels to integrate superior modulus, strength, and toughness (9.69 MPa, 0.97 MPa, and 5.60 MJ/m3, respectively). The study might provide meaningful enlightenments for rational structural design of future high-performance nanocomposite hydrogels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700