Bioreactor Performance and Quantitative Analysis of Methanogenic and Bacterial Community Dynamics in Microbial Electrolysis Cells during Large Temperature Fluctuations
详细信息    查看全文
  • 作者:Lu Lu ; Defeng Xing ; Nanqi Ren
  • 刊名:Environmental Science & Technology (ES&T)
  • 出版年:2012
  • 出版时间:June 19, 2012
  • 年:2012
  • 卷:46
  • 期:12
  • 页码:6874-6881
  • 全文大小:406K
  • 年卷期:v.46,no.12(June 19, 2012)
  • ISSN:1520-5851
文摘
The use of microbial electrolysis cells (MECs) for H2 production generally finds H2 sink by undesirable methanogenesis at mesophilic temperatures. Previously reported approaches failed to effectively inhibit methanogenesis without the addition of nongreen chemical inhibitors. Here, we demonstrated that the CH4 production and the number of methanogens in single-chamber MECs could be restricted steadily to a negligible level by continuously operating reactors at the relatively low temperature of 15 掳C. This resulted in a H2 yield and production rate comparable to those obtained at 30 掳C with less CH4 production (CH4% < 1%). However, this operation at 15 掳C should be taken from the initial stage of anodic biofilm formation, when the methanogenic community has not yet been established sufficiently. Maintaining MECs operating at 20 掳C was not effective for controlling methanogenesis. The varying degrees of methanogenesis observed in MECs at 30 掳C could be completely inhibited at 4 and 9 掳C, and the total number of methanogens (mainly hydrogenotrophic methanogens) could be reduced by 68鈥?1% during 32鈥?5 days of operation at the low temperatures. However, methanogens cannot be eliminated completely at these temperatures. After the temperature is returned to 30 掳C, the CH4 production and the number of total methanogens can rapidly rise to the prior levels. Analysis of bacterial communities using 454 pyrosequencing showed that changes in temperature had no a substantial impact on composition of dominant electricity-producing bacteria (Geobacter). The results of our study provide more information toward understanding the temperature-dependent control of methanogenesis in MECs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700