Theoretical Analysis on the Optoelectronic Properties of Single Crystals of Thiophene-furan-phenylene Co-Oligomers: Efficient Photoluminescence due to Molecular Bending
详细信息    查看全文
文摘
We theoretically analyze the optoelectronic properties of single crystals of 2,5-bis(4-biphenylyl) bithiophene (BP2T) and 2-(4-biphenyl)-5-[5-(4-biphenyl)-2-thienyl] furan (BPFT) molecules, aiming to provide a guiding principle for the material design of organic light-emitting transistors. The X-ray structure analysis and the density functional theory (DFT) calculations indicate that half of the BPFT molecules bend the 蟺-conjugation plane in the crystal. The Marcus theory parametrized by the DFT calculations indicates anisotropic charge mobilities. The emission spectra of the BP2T and BPFT crystals are analyzed by the time-dependent DFT calculations in conjunction with the Frenkel exciton model and the vibronic coupling analysis. We revealed that the high photoluminescence efficiency of the BPFT crystal originates from the symmetry breaking of the H-aggregate, where the transition dipole of the dark state does not cancel out.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700