High-Throughput Synthesis and Screening of Titania-Based Photocatalysts
详细信息    查看全文
文摘
Titanium dioxide is widely known as a prominent photocatalyst material and research in this area has increased substantially over the last decades. However, the photoactivity of TiO2 is hindered by several factors, such as a relatively high photogenerated electron鈥揾ole recombination rate and a wide bandgap of 鈭?.2 eV, rendering it inactive under visible light. Approaches to optimize the TiO2 photocatalyst, either by altering its morphological or chemical properties, have been conducted for many years, yet further modification of this semiconductor has the potential to yield photocatalysts with excellent properties and higher photocatalytic activity. This could be effectively explored using combinatorial synthesis coupled with high-throughput characterization approaches. Such an approach has been widely applied for the discovery of new functional materials, including photocatalysts. By using high-throughput synthesis and characterization technology, preparation and screening of materials on small sample scales can be accelerated; hence, new TiO2-based photocatalysts with enhanced photocatalytic activity can be acquired more rapidly. Additionally, the large database of materials being systematically examined will greatly build our fundamental understanding of the relation between materials structure/composition and photocatalytic activity. This review details various high-throughput syntheses and characterization techniques applied to improve the photocatalytic properties of TiO2 materials and discuss several challenges that have been raised or may be encountered in the future when using this approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700