Dark Plasmons in Hot Spot Generation and Polarization in Interelectrode Nanoscale Junctions
详细信息    查看全文
文摘
Nanoscale gaps between adjacent metallic nanostructures give rise to extraordinarily large field enhancements, known as 鈥渉ot spots鈥? upon illumination. Incident light with the electric field polarized across the gap (along the interparticle axis) is generally known to induce the strongest surface enhanced Raman spectroscopy (SERS) enhancements. However, here we show that, for a nanogap located within a nanowire linking extended Au electrodes, the greatest enhancement and resulting SERS emission occurs when the electric field of the incident light is polarized along the gap (transverse to the interelectrode axis). This surprising and counterintuitive polarization dependence results from a strong dipolar plasmon mode that resonates transversely across the nanowire, coupling with dark multipolar modes arising from subtle intrinsic asymmetries in the nanogap. These modes give rise to highly reproducible SERS enhancements at least an order of magnitude larger than the longitudinal modes in these structures.

Keywords:

Surface-enhanced Raman spectroscopy (SERS); nanogap; extended electrode nanojunction; polarization; plasmon; electromigration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700