Plasmon-Assisted Photoresponse in Ge-Coated Bowtie Nanojunctions
详细信息    查看全文
文摘
We demonstrate plasmon-enhanced photoconduction in Au bowtie nanojunctions containing nanogaps overlaid with an amorphous Ge film. The role of plasmons in the production of nanogap photocurrent is verified by studying the unusual polarization dependence of the photoresponse. With increasing Ge thickness, the nanogap polarization of the photoresponse rotates 90掳, indicating a change in the dominant relevant plasmon mode, from the resonant transverse plasmon at low thicknesses to the nonresonant 鈥渓ightning rod鈥?mode at higher thicknesses. To understand the plasmon response in the presence of the Ge overlayer and whether the Ge degrades the Au plasmonic properties, we investigate the photothermal response (from the temperature-dependent Au resistivity) in no-gap nanowire structures, as a function of Ge film thickness and nanowire geometry. The film thickness and geometry dependence are modeled using a cross-sectional, finite element simulation. The no-gap structures and the modeling confirm that the striking change in nanogap polarization response results from redshifting of the resonant transverse mode, rather than degradation in the Au/Ge properties. We note remaining challenges in determining the precise mechanism of photocurrent production in the nanogap structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700