Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance
详细信息    查看全文
文摘
Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illumination—conditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal–substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700