Adsorption Equilibria and Kinetics of Methane + Nitrogen Mixtures on the Activated Carbon Norit RB3
详细信息    查看全文
文摘
The separation of methane and nitrogen from binary mixtures using a commercial activated carbon, Norit RB3, was investigated. The adsorption of pure fluids and CH4 + N2 mixtures were measured at temperatures of 242, 273, and 303 K, at pressures ranging from 53 to 5000 kPa using a high pressure volumetric apparatus and at pressures from 104 to 902 kPa using a dynamic column breakthrough apparatus (DCB). The pure gas equilibrium adsorption capacities were regressed to Toth, Langmuir, Langmuir鈥揊reundlich, and Sips isotherm models; the Toth model gave the best prediction of measured capacities at pressures from 800 to 5000 kPa. The uptake of components from gas mixtures calculated using the Ideal Adsorbed Solution Theory (IAST), Extended Langmuir and Multi-Sips models were all within the uncertainties of the measured adsorption capacities, suggesting that for this adsorbent there is no significant advantage in using the more computationally intensive IAST method. A linear driving force (LDF)-based model of adsorption in a fixed bed was developed to extract the lumped mass transfer coefficients for CH4 and N2 from the pure gas DCB experimental data. This model was used with results from the pure gas experiments to predict the component breakthroughs from equimolar CH4 + N2 mixtures in the DCB apparatus. The Norit RB3 exhibited equilibrium selectivities for CH4 over N2 in the range 3 to 7 (measured selectivites have an average uncertainty of 37%), while the lumped mass transfer coefficients of CH4 and N2 were similar for this activated carbon, ranging from 0.004 to 0.052 s鈥?. The results presented can serve as a reference data set upon which industrial PSA processes for separating CH4 + N2 mixtures using generic activated carbons can be developed and optimized over a wide range of pressures and temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700