Chiral 鈥淧inwheel鈥?Heterojunctions Self-Assembled from C60 and Pentacene
详细信息    查看全文
文摘
We demonstrate the self-assembly of C60 and pentacene (Pn) molecules into acceptor鈥揹onor heterostructures which are well-ordered and鈥攄espite the high degree of symmetry of the constituent molecules鈥?i>chiral. Pn was deposited on Cu(111) to monolayer coverage, producing the random-tiling (R) phase as previously described. Atop R-phase Pn, postdeposited C60 molecules cause rearrangement of the Pn molecules into domains based on chiral supramolecular 鈥減inwheels鈥? These two molecules are the highest-symmetry achiral molecules so far observed to coalesce into chiral heterostructures. Also, the chiral pinwheels (composed of 1 C60 and 6 Pn each) may share Pn molecules in different ways to produce structures with different lattice parameters and degree of chirality. High-resolution scanning tunneling microscopy results and knowledge of adsorption sites allow the determination of these structures to a high degree of confidence. The measurement of chiral angles identical to those predicted is a further demonstration of the accuracy of the models. van der Waals density functional theory calculations reveal that the Pn molecules around each C60 are torsionally flexed around their long molecular axes and that there is charge transfer from C60 to Pn in each pinwheel.

Keywords:

pentacene; carbon-60; scanning tunneling microscopy; chirality; pinwheel

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700