On the Origins of Nonradiative Excited State Relaxation in Aryl Sulfoxides Relevant to Fluorescent Chemosensing
详细信息    查看全文
文摘
We provide herein a mechanistic analysis of aryl sulfoxide excited state processes, inspired by our recent report of aryl sulfoxide based fluorescent chemosensors. The use of aryl sulfoxides as reporting elements in chemosensor development is a significant deviation from previous approaches, and thus warrants closer examination. We demonstrate that metal ion binding suppresses nonradiative excited state decay by blocking formation of a previously unrecognized charge transfer excited state, leading to fluorescence enhancement. This charge transfer state derives from the initially formed locally excited state followed by intramolecular charge transfer to form a sulfoxide radical cation/aryl radical anion pair. With the aid of computational studies, we map out ground and excited state potential energy surface details for aryl sulfoxides, and conclude that fluorescence enhancement is almost entirely the result of excited state effects. This work expands previous proposals that excited state pyramidal inversion is the major nonradiative decay pathway for aryl sulfoxides. We show that pyramidal inversion is indeed relevant, but that an additional and dominant nonradiative pathway must also exist. These conclusions have implications for the design of next generation sulfoxide based fluorescent chemosensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700