High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth
详细信息    查看全文
文摘
rel="stylesheet" type="text/css" href="/templates/jsp/css/jquery-ui-1.10.2/base/jquery-ui.min.css"/> High-Speed Planar GaAs Nanowi<font color="red">re</font> Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth - Nano Letters (ACS Publications) rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />re Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth" />reator" content="Xin Miao" />reator" content="Kelson Chabak" />reator" content="Chen Zhang" />reator" content="Parsian K. Mohseni" />reator" content="Dennis Walker, Jr." />reator" content="Xiuling Li" />re; III鈭扸; transistor; VLSI" />ree planar III鈥揤 nanowire (NW) arrays with 鈭?00% yield and precisely defined positions are realized via a patterned vapor鈥搇iquid鈥搒olid (VLS) growth method. Long and uniform planar GaAs NWs were assembled in perfectly parallel arrays to form double-channel T-gated NW array-based high electron mobility transistors (HEMTs) with DC and RF performance surpassing those for all field-effect transistors (FETs) with VLS NWs, carbon nanotubes (CNTs), or graphene channels in-plane with the substrate. For a planar GaAs NW array-based HEMT with 150 nm gate length and 2 V drain bias, the on/off ratio (ION/IOFF), cutoff frequency (fT), and maximum oscillation frequency (fmax) are 104, 33, and 75 GHz, respectively. By characterizing more than 100 devices on a 1.5 脳 1.5 cm2 chip, we prove chip-level electrical uniformity of the planar NW array-based HEMTs and verify the feasibility of using this bottom-up planar NW technology for post-Si large-scale nanoelectronics." />re, III鈭扸, transistor, VLSI" />reventParsing" content="true"/>rel="meta" type="application/atom+xml" href="http://dx.doi.org/10.1021%2Fnl503596j"/>rel="meta" type="application/rdf+json" href="http://dx.doi.org/10.1021%2Fnl503596j"/>rel="meta" type="application/unixref+xml" href="http://dx.doi.org/10.1021%2Fnl503596j"/> ref="/templates/jsp/style.css" rel="stylesheet" type="text/css" />ref="/templates/jsp/_style2/style.css" rel="stylesheet" type="text/css" /> rel="SHORTCUT ICON" href="/templates/jsp/_style2/_achs/favicon.ico" /> rel="stylesheet" type="text/css" media="print" href="/templates/jsp/_style2/_achs/css/atypon-print.css" /> ref='/sda/503760/acs-main.min.css?20140529=01' rel='stylesheet' type='text/css' /> ref="/action/clickThrough?id=2896080&url=http%3A%2F%2Facsmediakit.org&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264" style="text-decoration: none; border: none;">
ref="https://pubs.acs.org/action/showLogin?uri=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j" onclick="pubsLogin();return false;" id="loginButton">Log In Register ref="/action/clickThrough?id=317640&url=%2Faction%2FshowPublications%3Fdisplay%3Djournals&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264" id="journalList"> ACS Journals | ref="/action/clickThrough?id=317640&url=http%3A%2F%2Fwww.acschemworx.org&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264">ACS ChemWorx | ref="/action/clickThrough?id=317640&url=%2Fpage%2Fbooks%2Findex.html&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264">ACS eBooks | ref="/action/clickThrough?id=317640&url=%2Fisbn%2F9780841239999&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264">ACS Style Guide | ref="/action/clickThrough?id=317640&url=%2Fjournal%2Fcenear&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264">C&EN Archives | ref="/action/clickThrough?id=317640&url=%2Fpage%2Fsubscribe.html&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264">Subscribe | ref="/action/clickThrough?id=317640&url=https%3A%2F%2Fservices.acs.org%2Fpubshelp%2Fpassthru.cgi&loc=%2Fdoi%2Fabs%2F10.1021%2Fnl503596j&pubId=419762264" target="_blank" class="help">Help ref="/" title="ACS Publications Home"> ref="/search/advanced" id="qsAdvanced">Advanced Search
return false;"> rea" type="hidden" name="" value="" />
Digital Object Identifier (DOI)

Select a ref="http://cas.org" target="_blank">CAS section from the 5 main topical divisions below:

ref="#" onclick="toggleQS('search'); return false;"> ref="/journal/nalefd" title="Journal Home Page">

Letter

High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth

Xin Miao ref-aff">鈥?/sup>
ref" href="#notes-1">reserve">, Kelson Chabak ref-aff">鈥?/sup>ref-aff">鈥?/sup>ref" href="#notes-1">reserve">, Chen Zhang ref-aff">鈥?/sup>reserve">, Parsian K. Mohseni ref-aff">鈥?/sup>reserve">, Dennis Walker reserve">, Jr.ref-aff">鈥?/sup>reserve">, and Xiuling Li ref" href="#cor1">*ref-aff">鈥?/sup> 鈥?/sup> Microand Nanotechnology Laboratory, Universityof Illinois Urbana鈭扖hampaign, 208 N. Wright Street, Urbana, Illinois 61801, UnitedStates鈥?/sup> AirForce Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright-PattersonAir Force Base, Ohio 45433, United StatesNano Lett., 2015, 15 (5), pp 2780&ndash;2786DOI: 10.1021/nl503596jPublication Date (Web): December 10, 2014Copyright 漏 2014 American Chemical Society*E-mail: ref="mailto:xiuling@illinois.edu">xiuling@illinois.edu.

Abstract

Wafer-scale defect-free planar III鈥揤 nanowire (NW) arrays with 鈭?00% yield and precisely defined positions are realized via a patterned vapor鈥搇iquid鈥搒olid (VLS) growth method. Long and uniform planar GaAs NWs were assembled in perfectly parallel arrays to form double-channel T-gated NW array-based high electron mobility transistors (HEMTs) with DC and RF performance surpassing those for all field-effect transistors (FETs) with VLS NWs, carbon nanotubes (CNTs), or graphene channels in-plane with the substrate. For a planar GaAs NW array-based HEMT with 150 nm gate length and 2 V drain bias, the on/off ratio (ION/IOFF), cutoff frequency (fT), and maximum oscillation frequency (fmax) are 104, 33, and 75 GHz, respectively. By characterizing more than 100 devices on a 1.5 脳 1.5 cm2 chip, we prove chip-level electrical uniformity of the planar NW array-based HEMTs and verify the feasibility of using this bottom-up planar NW technology for post-Si large-scale nanoelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700