Accurate Identification and Selective Removal of Rotavirus Using a Plasmonic鈥揗agnetic 3D Graphene Oxide Architecture
详细信息    查看全文
文摘
According to the World Health Organization, even in the 21st century, more than one million children die each year due to the rotavirus contamination of drinking water. Therefore, accurate identification and removal of rotavirus are very important to save childrens鈥?lives. Driven by the need, in this Letter, we report for the first time highly selective identification and removal of rotavirus from infected water using a bioconjugated hybrid graphene oxide based three-dimensional (3D) solid architecture. Experimental results show that due to the presence of a high intensity of 鈥渉ot spots鈥?in the 3D network, an antibody-attached 3D plasmonic鈥搈agnetic architecture can be used for accurate identification of rotavirus using surface-enhanced Raman spectroscopy (SERS). Reported data demonstrate that the antibody-attached 3D network binds strongly with rotavirus and is capable of highly efficient removal of rotavirus, which has been confirmed by SERS, fluorescence imaging, and enzyme-linked immunosorbent assay (ELISA) data. We discuss a possible mechanism for accurate identification and efficient removal of rotavirus from infected drinking water.

Keywords:

label-free rotavirus identification; selective separation of rotavirus; plasmonic鈭抦agnetic 3D graphene oxide architecture; SERS and fluorescence imaging

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700