Non-Adiabatic Effects on Excited States of Vinylidene Observed with Slow Photoelectron Velocity-Map Imaging
详细信息    查看全文
文摘
High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled 2B2 H2CC and D2CC in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the 3B2 (T1), 3A2 (T2), and à 1A2 (S1) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H2CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and triplet states near the state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H2CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H2CC are found to be T0(ã 3B2) = 2.064(6), T0( 3A2) = 2.738(6), and T0(à 1A2) = 2.991(6) eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700