Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors
详细信息    查看全文
文摘
Monitoring toxic chlorine (Cl2) at the parts-per-billion (ppb) level is crucial for safe usage of this gas. Herein, ZnO, WO3, and SnO2 nanowire sensors were fabricated using an on-chip growth technique with chemical vapor deposition. The Cl2 gas-sensing characteristics of the fabricated sensors were systematically investigated. Results demonstrated that SnO2 nanowires exhibited higher sensitivity to Cl2 gas than ZnO and WO3 nanowires. The response (RCl2/Rair) of the SnO2 nanowire sensor to 50 ppb Cl2 at 50 °C was about 57. Hence, SnO2 nanowires can be an excellent sensing material for detecting Cl2 gas at the ppb level under low temperatures. Abnormal sensing characteristics were observed in the WO3 and SnO2 nanowire sensors at certain temperatures; in particular, the response level of these sensors to 5 ppm of Cl2 was lower than that to 2.5 ppm of Cl2. The sensing mechanism of the SnO2 nanowire sensor was also elucidated by determining Cl2 responses under N2 and dry air as carrier gases. We proved that the Cl2 molecule was first directly adsorbed on the metal oxide surface and was then substituted for pre-adsorbed oxygen, followed by lattice oxygen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700