Optimizing Oxygen Reduction Catalyst Morphologies from First Principles
详细信息    查看全文
文摘
Catalytic activity of perovskites for oxygen reduction (ORR) was recently correlated with bulk d-electron occupancy of the transition metal. We expand on the resultant model, which successfully reproduces the high activity of LaMnO3 relative to other perovskites, by addressing catalyst surface morphology as an important aspect of the optimal ORR catalyst. The nature of reaction sites on low index surfaces of orthorhombic (Pnma) LaMnO3 is established from First Principles. The adsorption of O2 is markedly influenced by local geometry and strong electron correlation. Only one of the six reactions sites that result from experimentally confirmed symmetry-breaking Jahn鈥揟eller distortions is found to bind O2 with an intermediate binding energy while facilitating the formation of superoxide, an important ORR intermediate in alkaline media. As demonstrated here for LaMnO3, rational design of the catalyst morphology to promote specific active sites is a highly effective optimization strategy for advanced functional ORR catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700