Anomalous Strain Relaxation in Core–Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth
详细信息    查看全文
文摘
Nanoscale substrates such as nanowires allow heterostructure design to venture well beyond the narrow lattice mismatch range restricting planar heterostructures, owing to misfit strain relaxing at the free surfaces and partitioning throughout the entire nanostructure. In this work, we uncover a novel strain relaxation process in GaAs/Inb>xb>Gab>1–xb>As core–shell nanowires that is a direct result of the nanofaceted nature of these nanostructures. Above a critical lattice mismatch, plastically relaxed mounds form at the edges of the nanowire sidewall facets. The relaxed mounds and a coherent shell grow simultaneously from the beginning of the deposition with higher lattice mismatches increasingly favoring incoherent mound growth. This is in stark contrast to Stranski–Krastanov growth, where above a critical thickness coherent layer growth no longer occurs. This study highlights how understanding strain relaxation in lattice mismatched nanofaceted heterostructures is essential for designing devices based on these nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700