Efficient Construction of Nonorthogonal Localized Molecular Orbitals in Large Systems
详细信息    查看全文
  • 作者:Ganglong Cui ; Weihai Fang ; Weitao Yang
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2010
  • 出版时间:August 26, 2010
  • 年:2010
  • 卷:114
  • 期:33
  • 页码:8878-8883
  • 全文大小:227K
  • 年卷期:v.114,no.33(August 26, 2010)
  • ISSN:1520-5215
文摘
Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004, 120, 9458 and J. Chem. Phys. 2000, 112, 4). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700