Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater
详细信息    查看全文
  • 作者:Yatsandra Oyola ; Christopher J. Janke ; Sheng Dai
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2016
  • 出版时间:April 20, 2016
  • 年:2016
  • 卷:55
  • 期:15
  • 页码:4149-4160
  • 全文大小:559K
  • 年卷期:0
  • ISSN:1520-5045
文摘
The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. We have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN) and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of gU/kgads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700