Competitive Fe(II)–Zn(II) Uptake on a Synthetic Montmorillonite
详细信息    查看全文
文摘
The interaction of Fe(II) with clay minerals is of particular relevance in global geochemical processes controlling metal and nutrient cycles and the fate of contaminants. In this context, the influence of competitive sorption effects between Fe(II) and other relevant transition metals on their uptake characteristics and mobility remains an important issue. Macroscopic sorption experiments combined with surface complexation modeling and extended X-ray absorption fine structure (EXAFS) spectroscopy were applied to elucidate competitive sorption processes between divalent Fe and Zn at the clay mineral鈥搘ater interface. Sorption isotherms were measured on a synthetic iron-free montmorillonite (IFM) under anoxic conditions (O2 <0.1 ppm) for the combinations of Zn(II)/Fe(II) and Fe(II)/Zn(II), where the former metal in each pair represents the trace metal (<10鈥? M) and the latter the competing metal at higher concentrations (10鈥? to 10鈥? M). Results of the batch sorption and EXAFS measurements indicated that Fe(II) is competing with trace Zn(II) for the same type of strong sites if Fe(II) is present in excess, whereas no competition between trace Fe(II) and Zn(II) was observed if Zn(II) is present at high concentrations. The noncompetitive behavior suggests the existence of sorption sites which have a higher affinity for Fe(III), where surface-induced oxidation of the sorbed Fe(II) to Fe(III) occurred, and which are not accessible for Zn(II). The understanding of this competitive uptake mechanism between Fe(II) and Zn(II) is of great importance to assess the bioavailability and mobility of transition metals in the natural environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700