UV Photon-Induced Water Decomposition on Zirconia Nanoparticles
详细信息    查看全文
文摘
Formation of H2 from photolysis of water adsorbed on zirconia (ZrO2) nanoparticles using 254 nm (4.9 eV) and 185 nm (6.7 eV) photon irradiation was examined. The H2 yield was approximately an order of magnitude higher using monoclinic versus cubic phase nanoparticles. For monoclinic particles containing 2 monolayers (ML) of water, the maximum H2 production rate was 0.4 渭mole h鈥? m鈥? using 185 + 254 nm excitation and a factor of 10 lower using only 254 nm. UV reflectance reveals that monoclinic nanoparticles contain fewer defects than cubic nanoparticles. An H2O coverage dependence study of the H2 yield is best fit by a sum of interactions involving at least two types of adsorbate鈥搒urface complexes. The first dominates up to 0.06 ML and is attributed to H2O chemisorbed at surface defect sites. The second dominates at coverages up to a bilayer. H2 formation is maximum within this bilayer and likely results from efficient energy transfer from the particle to the interface. Energy transfer is more efficient for the monoclinic ZrO2 nanoparticles and likely involves mobile excitons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700