Production and Characterization of Fully Selenomethionine-Labeled Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Laurent Ouerdane ; Zoltn Mester
  • 刊名:Journal of Agricultural and Food Chemistry
  • 出版年:2008
  • 出版时间:December 24, 2008
  • 年:2008
  • 卷:56
  • 期:24
  • 页码:11792-11799
  • 全文大小:365K
  • 年卷期:v.56,no.24(December 24, 2008)
  • ISSN:1520-5118
文摘
This paper reports, for the first time, a quantitative replacement of methionine (Met) by selenomethionine (SeMet) at >98% substitution, with up to 4940 μg of SeMet/g of yeast obtained for the entire protein pool of a wild-type yeast grown on a SeMet-containing medium. The incorporation of selenium in yeast proteins, in the form of selenomethionine, and the influence of various organic and inorganic Se and S sources present in the media were monitored during the growth of a wild-type Saccharomyces cerevisiae, which allowed the optimization of the composition of a fully defined synthetic growth medium that ensured maximum SeMet incorporation. Quantitation of SeMet and Met was performed by species-specific isotope dilution GC-MS. The use of ascorbic acid and a minimum concentration of cysteine (5 μg/L) was found to be beneficial to achieve incorporation by limiting the oxidative stress due to the presence of selenium. Except for small amounts of cysteine, no other sources of sulfur were necessary to achieve yeast growth. In a medium containing Se(VI), the maximum replacement of Met with SeMet was 50%, which is considerably higher than that obtained with the current commercial Se yeast formulations. For yeast grown in a Met-free defined medium, which was supplemented with SeMet, nearly total replacement of Met with SeMet could be achieved. The fully Se-labeled yeast could be an important tool for the study of eukaryotic protein structures both by mass spectrometry and by X-ray crystallography through selenomethionine single- and multiple-wavelength anomalous dispersion (SAD and MAD) phasing. In addition, a particular yeast strain, BY4741, that cannot synthesize Met using inorganic sulfur (met15Δ0) was shown to produce SeMet in the presence of inorganic selenium. This might indicate that the incorporation of inorganic selenium salts [Se(VI) and Se(IV)] is obviously not occurring exclusively through the same biological pathways as for sulfur. The reduction of inorganic Se to hydrogen selenide (H2Se), its reactions with organic compounds present in the yeast or in the media, and the possible metabolization through unspecific enzymatic pathways (such as transsulfuration) could also be of considerable importance in the production of selenoamino acids during yeast growth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700