Low Oxidation State and Enhanced Magnetic Properties Induced by Raspberry Shaped Nanostructures of Iron Oxide
详细信息    查看全文
文摘
Nanostructures with controlled size, morphology, and composition represent a main challenge in materials science because controlling these parameters is fundamental to optimizing the subsequent functional properties. Aggregated nanostructures, combining both individual and collective properties of nanocrystals, offer interesting perspectives to design new magnetic nanomaterials. In that context, original porous raspberry shaped nanostructures consisting of oriented aggregates of ferrite nanocrystals have been synthesized by an one-pot polyol solvothermal method. Synthesis conditions have been optimized to obtain nanostructures featured by similar sizes of about 250 nm and nanocrystal sizes modulated from 5 to 60 nm, leading to porous structures with tunable specific surface area. Structural and magnetic studies of nanostructures as a function of the nanocrystal size evidenced their low oxidation state and enhanced magnetic properties. Indeed, the oriented aggregation of nanocrystals leads to high interface between nanograins reducing significantly their surface oxidation and enhancing their saturation magnetization in comparison to individual nanoparticles of similar sizes. Magnetic moments of each grain are also consequently strongly coupled by dipolar interactions which led to superspin glass effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700