Local Relaxation Behavior and Dynamic Fragility in Hydrogen Bonded Polymer Blends
详细信息    查看全文
文摘
The dynamics of intermolecularly hydrogen-bonded polymer blends of poly(p-(hexafluoro-2-hydroxyl-2-propyl)styrene) with poly(vinyl acetate), poly(ethylene[30]-co-vinyl acetate[70]) and poly(ethylene[55]-co-vinyl acetate[45]) are investigated by broadband dielectric relaxation spectroscopy and Fourier transform infrared spectroscopy. Each blend component exhibits a glassy state (β) relaxation, and these relaxations are affected by the formation of intermolecular associations. The glassy state behavior of the blends can be modeled using the Painter−Coleman association model. All blends exhibit a single Tg and a single dielectric segmental (α) relaxation, indicative of strong segmental-level coupling. The fragility of the glass-formers depends on the volume fraction of intermolecularly associated segments, and the association model predicts which compositions have the highest fragilities. A relaxation related to the breaking and reforming of hydrogen bonds is observed at temperatures above the α process, and its temperature dependence varies systematically with ethylene content.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700