DNA-Directed Artificial Light-Harvesting Antenna
详细信息    查看全文
文摘
Designing and constructing multichromophoric, artificial light-harvesting antennas with controlled interchromophore distances, orientations, and defined donor鈥揳cceptor ratios to facilitate efficient unidirectional energy transfer is extremely challenging. Here, we demonstrate the assembly of a series of structurally well-defined artificial light-harvesting triads based on the principles of structural DNA nanotechnology. DNA nanotechnology offers addressable scaffolds for the organization of various functional molecules with nanometer scale spatial resolution. The triads are organized by a self-assembled seven-helix DNA bundle (7HB) into cyclic arrays of three distinct chromophores, reminiscent of natural photosynthetic systems. The scaffold accommodates a primary donor array (Py), secondary donor array (Cy3) and an acceptor (AF) with defined interchromophore distances. Steady-state fluorescence analyses of the triads revealed an efficient, stepwise funneling of the excitation energy from the primary donor array to the acceptor core through the intermediate donor. The efficiency of excitation energy transfer and the light-harvesting ability (antenna effect) of the triads was greatly affected by the relative ratio of the primary to the intermediate donors, as well as on the interchromophore distance. Time-resolved fluorescence analyses by time-correlated single-photon counting (TCSPC) and streak camera techniques further confirmed the cascading energy transfer processes on the picosecond time scale. Our results clearly show that DNA nanoscaffolds are promising templates for the design of artificial photonic antennas with structural characteristics that are ideal for the efficient harvesting and transport of energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700