Actin Stimulates Reduction of the MICAL-2 Monooxygenase Domain
详细信息    查看全文
  • 作者:Claudia A. McDonald ; Ying Yi Liu ; Bruce A. Palfey
  • 刊名:Biochemistry
  • 出版年:2013
  • 出版时间:September 3, 2013
  • 年:2013
  • 卷:52
  • 期:35
  • 页码:6076-6084
  • 全文大小:457K
  • 年卷期:v.52,no.35(September 3, 2013)
  • ISSN:1520-4995
文摘
MICALs are large, multidomain flavin-dependent monooxygenases that use redox chemistry to cause actin to depolymerize. Little enzymology has been reported for MICALs, and none has been reported for MICAL-2, an enzyme vital for the proliferation of prostate cancer. The monooxygenase domains of MICALs resemble aromatic hydroxylases, but their substrate is the sulfur of a methionine of actin. In order to determine how closely MICAL-2 conforms to the aromatic hydroxylase paradigm, we studied its reaction with NAD(P)H. The enzyme has a strong preference for NADPH over NADH caused by a large difference in binding NADPH. A comparison of the reduction kinetics using protio-NADPH and [4R-2H]-NADPH showed that MICAL-2 is specific for the proR hydride of NADPH, as evidenced by a 4.8-fold kinetic isotope effect. The reductive half-reaction of the MICAL-2 hydroxylase domain is stimulated by f-actin. In the absence of actin, NADPH reduces the flavin relatively slowly; actin speeds that reaction significantly. The separate monooxygenase domain of MICAL-2 has the classic regulatory behavior of flavin-dependent aromatic hydroxylases (Class A monooxygenases): slow reduction of the flavin when the substrate to be oxygenated is absent. This prevents the wasteful consumption of reduced pyridine nucleotide and the production of harmful H2O2. Our results show that this strategy is used by MICAL-2. Thus, our data suggest that MICAL-2 could regulate catalysis through the monooxygenase domain alone; control by interactions with other domains of MICAL in the full-length enzyme may not be needed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700