DNA Coatings from Byproducts: A Panacea for the Flame Retardancy of EVA, PP, ABS, PET, and PA6?
详细信息    查看全文
  • 作者:Jenny Alongi ; Fabio Cuttica ; Federico Carosio
  • 刊名:ACS Sustainable Chemistry & Engineering
  • 出版年:2016
  • 出版时间:June 6, 2016
  • 年:2016
  • 卷:4
  • 期:6
  • 页码:3544-3551
  • 全文大小:485K
  • 年卷期:0
  • ISSN:2168-0485
文摘
One of the most important challenges for thermoplastic polymers is to find flame retardants (FRs) capable of efficiently protecting them. At the same time, these desired FRs should be environmentally sustainable, cheap, and suitable for most of the polymers employed on the industrial scale. Obviously, it is almost impossible to design such a universal FR to be used for polymers having different chemical structures. We have recently demonstrated the efficiency of a deoxyribose nucleic acid (DNA) coating as a FR solution for cellulose and ethylene-vinyl-acetate (EVA) copolymer. Pursuing this research, in the present study we investigate the FR effect of different DNA amounts on 3 mm EVA samples in order to optimize its cost/effectiveness ratio. FR performances were evaluated with a cone calorimeter under 35 and 50 kW/m<sup>2sup>. Then, the optimized DNA amount was tested on EVA samples having different thicknesses (namely, 1 and 6 mm) in order to establish whether a correlation between DNA amount and sample mass exists. Finally, the DNA potentialities as “universal” FR have been investigated on samples of polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyethyleneterephthalate (PET), and polyamide 6 (PA6) and compared with some of the best FR solutions found in the literature or on the market.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700