Atomistic Molecular Dynamics Simulations of CO2 Diffusivity in H2O for a Wide Range of Temperatures and Pressures
详细信息    查看全文
文摘
Molecular dynamics simulations were employed for the calculation of diffusion coefficients of CO2 in H2O. Various combinations of existing force fields for H2O (SPC, SPC/E, and TIP4P/2005) and CO2 (EPM2 and TraPPE) were tested over a wide range of temperatures (283.15 K < T < 623.15 K) and pressures (0.1 MPa < P < 100.0 MPa). All force-field combinations qualitatively reproduce the trends of the experimental data; however, two specific combinations were found to be more accurate. In particular, at atmospheric pressure, the TIP4P/2005鈥揈PM2 combination was found to perform better for temperatures lower than 323.15 K, while the SPC/E鈥揟raPPE combination was found to perform better at higher temperatures. The pressure dependence of the diffusion coefficient of CO2 in H2O at constant temperature is shown to be negligible at temperatures lower than 473.15 K, in good agreement with experiments. As temperature increases, the pressure effect becomes substantial. The phenomenon is driven primarily by the higher compressibility of liquid H2O at near-critical conditions. Finally, a simple power-law-type phenomenological equation is proposed to correlate the simulation values; the proposed correlation should be useful for engineering calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700