Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures
详细信息    查看全文
文摘
The ability to synthesize and propagate genetic information encoded in the framework of xeno-nucleic acid (XNA) polymers would inform a wide range of topics from the origins of life to synthetic biology. While directed evolution has produced examples of engineered polymerases that can accept XNA substrates, these enzymes function with reduced activity relative to their natural counterparts. Here, we describe a biochemical strategy that enables the discovery of engineered polymerases with improved activity for a given unnatural polymerase function. Our approach involves identifying specificity determining residues (SDRs) that control polymerase activity, screening mutations at SDR positions in a model polymerase scaffold, and assaying key gain-of-function mutations in orthologous protein architectures. By transferring beneficial mutations between homologous protein structures, we show that new polymerases can be identified that function with superior activity relative to their starting donor scaffold. This concept, which we call scaffold sampling, was used to generate engineered DNA polymerases that can faithfully synthesize RNA and TNA (threose nucleic acid), respectively, on a DNA template with high primer-extension efficiency and low template sequence bias. We suggest that the ability to combine phenotypes from different donor and recipient scaffolds provides a new paradigm in polymerase engineering where natural structural diversity can be used to refine the catalytic activity of synthetic enzymes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700