High-Throughput Synthesis, Screening, and Scale-Up of Optimized Conducting Indium Tin Oxides
详细信息    查看全文
文摘
A high-throughput optimization and subsequent scale-up methodology has been used for the synthesis of conductive tin-doped indium oxide (known as ITO) nanoparticles. ITO nanoparticles with up to 12 at % Sn were synthesized using a laboratory scale (15 g/hour by dry mass) continuous hydrothermal synthesis process, and the as-synthesized powders were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy. Under standard synthetic conditions, either the cubic In2O3 phase, or a mixture of InO(OH) and In2O3 phases were observed in the as-synthesized materials. These materials were pressed into compacts and heat-treated in an inert atmosphere, and their electrical resistivities were then measured using the Van der Pauw method. Sn doping yielded resistivities of ~10–2 Ω cm for most samples with the lowest resistivity of 6.0 × 10–3 Ω cm (exceptionally conductive for such pressed nanopowders) at a Sn concentration of 10 at %. Thereafter, the optimized lab-scale composition was scaled-up using a pilot-scale continuous hydrothermal synthesis process (at a rate of 100 g/hour by dry mass), and a comparable resistivity of 9.4 × 10–3 Ω cm was obtained. The use of the synthesized TCO nanomaterials for thin film fabrication was finally demonstrated by deposition of a transparent, conductive film using a simple spin-coating process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700