Systematic Insights from Medicinal Chemistry To Discern the Nature of Polymer Hydrophobicity
详细信息    查看全文
文摘
Predicting polymer hydrophobicity based on monomer structure is an ill-posed problem. Generally, the hydrophobicity of a polymer or a series of polymers has been determined through indirect methods (i.e., contact angle) after polymerization. This sequence presents a problem for the systematic design and rapid evaluation of specialty polymers synthesized via controlled polymerization methods. Here, we propose an approach inspired by medicinal chemistry to predict polymer hydrophobicity based on octanol鈥搘ater partition coefficients (LogPoct) determined through simple computational approaches. We envisioned that LogPoct, analogous to what is used in drug design, could provide a rational methodology to translate molecular structures of monomers and oligomers into quantifiable hydrophobicity values for polymers. A combination of critical design criteria and the predictive power of LogPoct values, normalized by surface area (LogPoct/SA), accurately assess polymer hydrophobicity. Experimental corroboration with a polarity-sensitive dye (i.e., Nile Red), advancing water contact angles measurements, and swelling ratio experiments verify the method represents a dramatic improvement. A direct and quantitative correlation existed between spectral shifts of Nile Red and calculated LogPoct/SA values, confirming a quantifiable metric for predicting polymer hydrophobicity. Computationally predicted values also resulted in a first approximation of advancing contact angle measurements over a broad spectrum of common polymers providing a basis for estimating contact angles, a screening tool to enhanced monomer design a priori, and a criterion to understand polymer physical properties. Furthermore, swelling ratio measurements elucidated boundary limits for swelling of relatively hydrophobic and hydrophilic polymers in water and hexanes, in addition to alternative alcohol derivative solvents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700